top of page
Home2021.png

RESEARCH AREAS

Our goal is to design new molecules and materials for applications in nanocatalysis, computer and communication technologies, memory devices and super-resolution bioimaging.

We explore phenomena engineered around the ability of molecules or nanoparticles to absorb and emit photons. Our efforts are directed to developing photoresponsive chemical tools to solve problems in materials and biological sciences, including metal and carbon nanoparticles, MOFs and synthetic molecular switches. Our objective is to manipulate reactivity and selected properties of organic molecules using metallic nanostructures to enhance chemical and physical properties at the single molecule/single particle level. We often combine steady-state and benchtop investigations with single molecule (SM) microscopy, a ground-breaking tool to understand reactions mechanisms and kinetics.

Our interests and projects combine:

  • Materials and Nanomaterials

  • Molecular Synthesis, Design and Engineering

  • Photochemistry and Plasmonics

Projects usually demand chemical synthesisstructural characterization, and spectroscopic analysis.

MATERIALS AND NANOMATERIALS

Our efforts are directed toward the design and the fabrication of hybrid, functional materials based on metal nanostructures, semiconductors, mesoporous materials, metal-organic frameworks (MOFs) and carbon nanomaterials.

This research line also focuses on the development and understanding of innovative nanosystems with the capability to perform complex functions. In this context, our group focuses on combining multiple discrete components into single multifunctional nanocomposites for use in cascade chemical reactions.

MOLECULAR SYNTHESIS, DESIGN
& ENGINEERING

Our research concentrates on the rational design and the synthesis of functional chemical compounds. Organic molecules are engineered such that their photochemical and photophysical properties can be directly (photochemistry) or indirectly (plasmonics) controlled with light. Supramolecular strategies are often implemented for the preparation of cooperative, multicomponent molecular devices.

Optically active systems are based on monomolecular or bimolecular fluorescent switches, photochromic compounds, and photocatalytic molecules. We seek to develop activatable or switchable fluorophores for applications in biological imaging, lithography and digital communication with nanoscaled resolution.

Glass instruments in the laboratory of chemical synthesis.jpg

PHOTOCHEMISTRY & PLASMONICS

We research new light-based strategies for the optimal control of chemical reactions. Photochemical methods are used for the controlled activation of catalytic nanosystems, manipulation of switchable molecules and their investigation (spectroscopy).

Diffraction prevents the focusing of light within nanoscaled volumes and the fabrication of features with molecular precision. Our goal is to overcome the diffraction barrier, by engineering together organic molecules and metal nanoparticles such that their properties can be used cooperatively, combining classic organic chemistry with plasmonic technology for lithography and biological microscopy.

Image by Joyce McCown

PROJECTS

Our Current Focus

PHOTOACTIVATABLE AND PHOTOSWITCHABLE FLUOROPHORES

We seek to develop activatable or switchable fluorophores for applications in biological imaging, sensing and digital communication with nanoscaled resolution.

Organic molecules can be engineered to switch from a nonemissive state to a fluorescent one (activation) or change the colour of their emission (switching), within a defined region of space and during a given interval of time under external control.

Switches_edited.png
Picture1.png

PHOTOACTIVE METAL ORGANIC FRAMEWORKS & CARBON NANODOTS

We engineer fluorescent carbon dots and MOFs to create multifunctional nanocomposites for bioimaging and molecular computing applications. 

Carbon or metal-organic nanoparticles are functionalized and customized with stimuli-responsive organic molecules on their surface or in their interior.

SURFACE PLASMON CONTROLLED EMISSION / PLASMONIC IMAGING

The spectral properties of fluorophores can be dramatically altered by near-field interactions with the electron clouds present in metal. These interactions modify the emission in ways not seen in classical fluorescence experiments. We investigate metal-enhanced fluorescence (MEF) effects to improve the signal-to-noise ratio and resolution of biological imaging and fundamental optical processes.

Picture2_edited.png
Logic.tif

DIGITAL PROCESSING AND COMMUNICATIONS WITH MOLECULES

We exploit selective processes and photochemical inputs to develop encrypting protocols and perform simple (AND, NOT and OR) or complex (EOR, INH, NOR, XNOR and XOR) logic operations with molecular switches.

SINGLE-MOLECULE MICROSCOPY & ANALYSIS OF NANOSYSTEMS

We combine steady-state and benchtop investigations with single molecule microscopy, a groundbreaking tool to understand the interactions between single molecules and single particles.

The insights gained at the single-molecule level can be transduced to practical improvements of the performance of chemical reactions at the macroscale.

Picture2_edited.jpg

LABS

SYNTHESIS LAB

Fully equipped for organic synthesis with fumehoods, rotary evaporators, analytical balances, a microwave reactor and various instrumentation useful for performing and analyzing synthetic transformations.

NANO LAB

Our advanced materials laboratory is equipped with two fumehoods dedicated to nanomaterials synthesis, a semi-micro analytical balance, an oven and muffle furnace, an ultrapure water system, a spin coater and freeze dryer/lyophilizer, Ion Chromatography (IC), pH meter and automatic titrator with auto sampling.

SPECTROSCOPY LAB

Equipped with advanced technology for measuring absorption and emission spectra of samples in solution or at the solid state, our spectroscopy lab houses:

  • An absorption spectrometer (Varian Cary 60 Uv-Vis) with Peltier Temperature Control and DRA Accessory

  • An emission spectrometer (Varian Cary Eclipse) with Peltier Temperature Control

  • A customizable, state-of-the-art LEDs illumination

  • A photoreactor (Luzchem LCZ-4)

  • A multicolour, portable LED illuminator (Luzchem LEDi)

TMU ANALYTICAL FACILITY

Members of the Laboratory for Nanomaterials and Molecular Plasmonics have access to the shared facilities of the Department of Chemistry and Biology of Toronto Metropolitan University and the TMU Analytical Facility, which include:

  • Powder X-Ray Diffractometry (PXRD)

  • Raman Spectroscopy

  • High Performance Liquid Chomatography (HPLC)

  • Gas Chromatography - Mass Spectrometry (GC-MS)

  • Gel Permeation Chromatography (GPC)

  • UV-Vis-NIR Absorption Spectrometry (Varian Cary 5000)

  • Infrared Spectrometry (FTIR)

  • Thermogravimetric Analysis (TGA)

  • Differential Scanning Calorimetry (DSC)

  • Atomic Absorption Spectrometry

  • Inductively Coupled Plasma (ICP) Spectroscopy 

  • Atomic Force Microscopy

  • Dynamic Light Scattering (DLS)

  • A 400-MHz Bruker multi-probe NMR instrument

bottom of page